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Discrete Morse Theory

Given a triangulated space M (built with vertices, edges, triangles,
tetrahedra, etc.), a discrete Morse function is a function f that assigns a
number to each simplex in M with the following constraints for every
p-simplex α(p):

1 #{β(p+1) > α(p)|f (β) ≤ f (α)} ≤ 1;

2 #{τ (p−1) < α(p)|f (τ) ≥ f (α)} ≤ 1.

Think: the function values increase (generically) as the dimension of the
simplices increase.

A simplex α is critical if both of the sets above are empty. So a critical
vertex corresponds to a local minimum, a critical n-simplex (n = top
dimension) is a local maximum, and the other critical simplices are saddles
of various indicies.
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Example: the torus
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The critical cells are f −1(0),
f −1(42), f −1(44), and
f −1(86).

The associated gradient field.
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In joint work with H. King and N. Mramor, we develop an algorithm which
takes a function sampled at points in some space and produces a discrete
Morse function on the space.

This has obvious applications to data analysis–often one has a set of
measurements over a region (e.g., temperature, barometric pressure, etc.)
and wishes to understand how the function changes in the region. Where
are the local maxima and minima, for example? This algorithm finds all
the critical points.

An implementation for regions in R3 is available at
http://www.math.umd.edu/∼hking/MorseExtract.html
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Persistent Homology

Suppose we have a collection of
points:

It’s pretty clear that this is a circle,
but how could we convince ourselves
of that?

Here’s the best linear fit:
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The field of algebraic topology has many techniques to find geometric
structures in a space. In particular, the homology groups measure the
number of holes of various dimensions in a space. More accurately, the
i-dimensional homology group measures the number of i-dimensional
objects in the space that cannot be filled in inside the space by an
(i + 1)-dimensional object.

There is a lot of heavy machinery that has been developed over the last
100 or so years to calculate these things, provided one has a good model
for the space in question. More recently, however, new techniques have
emerged to handle large point clouds (i.e., data sets).
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The problem with point clouds is that it is often not obvious that they
have been sampled from a reasonable space. But we go ahead and assume
that they have, try to reconstruct the underlying space, and then compute
its homology.

Question: How do we know we have the right space?
Answer: We don’t. So we build a nested sequence of spaces, compute the
homology of each, and see how it evolves over time. Homology classes that
persist for long intervals may be real, significant geometric objects in our
point cloud. We capture this information with an object called a barcode.
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Example

Here is a collection of complexes
built from 10 of the 100 data points
on the circle I showed earlier:

and here are the associated barcodes
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