

Big Data Meets High-Performance Reconfigurable Computing

UF Workshop on Dense, Intense, and Complex Data

Alan George

CHREC Center Director

Herman Lam

CHREC Center Associate Director

What is CHREC?

NSF Center for High-Performance Reconfigurable Computing

- Industry/University Cooperative Research Center (I/UCRC)
 - Unique US national research center, operational since January 2007
- CHREC is both national research center and consortium
 - Research base: Leading ECE/CS research groups @ four major universities
 - University of Florida (lead)
 - George Washington University
 - Brigham Young University
 - Virginia Tech
 - Members: Industry & government organizations
 - Often cited by NSF as one of top national centers
 - e.g., CHREC won 2012 Schwarzkopf Prize for Technology Innovation

- 1. AFRL Munitions Directorate
 - 2. AFRL Sensors Directorate
- 3. AFRL Space Vehicles Directorate
- 4. Altera
- 5. AMD
- 6. Arctic Region Supercomputing Center
- 7. Convey Computer
- Data IO
- Draper Lab CHREC Members
- 10. GiDEL
 11. Harris
 Industry & government
- 12. Honeywell organizations
- 13. IBM
- 14. Lockheed Martin MFC
- 15. Lockheed Martin SSC
- 16. Los Alamos National Laboratory
- 17. MIT Lincoln Laboratory
- 18. NASA Goddard Space Flight Center
- 19. NASA Kennedy Space Center
- 20. NASA Langley Research Center
- 21. National Instruments
- 22. National Security Agency
- 23. Office of Naval Research
- 24. Sandia National Laboratories
- 25. SEAKR Engineering
- 26. Space Micro
- 27. Texas Instruments
- 28. Xilinx

Conventional vs. Reconfigurable Computing

Conventional computing

- Each app must conform to predefined, fixed hardware of target
 - e.g. CPU, DSP, or GPU; fixed cores, memory, interconnect, & I/O structures
- GOOD performance when app maps well to predefined hardware
 - But poor performance when app maps poorly
- Programming simplicity with single core.
 - But programming complexity in scaling beyond one core

Reconfigurable computing

- Computing with hardware-reconfigurable circuits, devices, systems
 - Architecture can be adapted to match unique needs of each app or task
- GREAT performance when app maps poorly to predefined H/W
 - Customized parallelism, data precision, operations, memory structure, interconnect
- Much more energy-efficient than fixed-logic processors

Big-Data in Key Science Domains

Bioinformatics

- Sequencer output increases by 10x every 2 years!
 - Moore's Law: CPU performance doubles every 2 years
 - Kryder's Law: storage quadruples every 2 years

Computational finance

- Financial markets are significant producers of Big Data
 - Trades, quotes, earning statements, statistical releases, polls, etc.
- Our current emphasis is on risk analysis and management
 - Improve enterprise transparency, auditability, and oversight of risks
 - New regulatory and compliance requirements on risk reporting

Signal, image, & video processing

- Escalation in sensor fidelity and diversity
 - Explosion in data: limited time (real-time), power, space, & cost
- Vital in areas such as:
 - Computer/machine vision, medical imaging/diagnosis, face recognition, autonomous navigation, tracking, satellite imaging, etc.

Novo-G Supercomputer

- Developed and deployed at CHREC
 - Hardware acceleration of parallel applications
 - Hardware emulation of next-gen systems & apps
- Most powerful RC machine in known world
 - For some apps & uses, may be fastest computer of any kind in world!
 - O(1000) of times less cost, size, power,
 & cooling than massive supercomputers
- Award-winning system
 - 2012 Schwarzkopf Award
 - 2010 HPCwire Award
- New system expansion
 - Addition of top-end 28nm FPGAs (32)
 - Stratix-V D8 devices in PROCe-V boards
 - Focus on high-performance interconnect
 - 3D-torus & 5D-hypercube FPGA topologies

Novo-G Annual Growth

2009: 96 top-end Stratix-III FPGAs, each with 4.25GB SDRAM

2010: 96 more Stratix-III FPGAs, each with 4.25GB SDRAM

2011: 96 top-end Stratix-IV FPGAs,

each with 8.50GB SDRAM

2012: 96 more Stratix-IV FPGAs,

each with 8.50GB SDRAM

2013: 32 top-end Stratix-V FPGAs

(4x4x2 torus or 5D h-cube)

416

top-end

BioRC Research Highlights

- Smith-Waterman on Novo-G
 - Algorithm for optimal local alignment of DNA or RNA sequence pairs
 - Current configuration: 650 PEs per FPGA@ 125MHz (81 GCUPS limit)
- CHREC BLAST Toolset on Novo-G
 - Novo-BLAST:
 - High performance: hardware-accelerated BLAST algorithm
 - Output identical to NCBI-BLAST
 - □ BSW (BLAST-Wrapped Smith-Waterman):
 - Max. sensitivity, with runtimes on order of NCBI-BLAST

Baseline: Human X Chromosome v 19200, length 650 Seqs Software Runtime: 5,481 CPU hours on 2.4GHz Opteron		
# FPGAs	Runtime (sec)	Speedup *
1	23,846	827
4	5,966	3,307
96	250	78,926
128	188	104,955
192 (est.)	127	155,366

* Stratix-III E260 FPGAs at 125 MHz

S NCBI

Performance equivalent to 155,366 Opteron cores!

FinRC Research Highlights

- FinRC app for derivative pricing
 - Simulation model for multi-asset barrier options using Heston dynamics
- FinRC OpenCL studies
 - Standard benchmark defined by Securities
 Technology Analysis Center (STAC)
 - Productivity studies using Altera OpenCL

** Stratix IV E530 FPGA at 125 MHz; C-based SSE2 optimized baseline; On 1 core of Intel Xeon E5-2687 @ 3.1 GHz; Maturity = 10 years; 1,000,000 paths; 16 asset option

DspRC Research Highlights

Image Segmentation (Information Extraction)

Goal: Locate & separate objects from background

Speeded Up Robust Features = SURF (Decision Making)

 Goal: Extract features and recognize objects/surroundings

Autonomous Navigation

Object Recognition

Speedup vs. Number of Pipelines

1200
1000
800
600
400
200
0
Stratix-IV Stratix-III
0
200
400
600

Motivation for:

Unsupervised + real-time image and video processing for autonomous applications

Architectural Studies for Big Data

- Explore adaptive networks to accelerate communicationintensive Big-Data apps
 - Efficient FPGA-to-FPGA multidimensional, backend networks
 - e.g., Adaptable 3D-torus or 5D-hypercube

- Many-core and hybrid-core exploration for Big-Data
 - □ Tilera (up to 72 cores)
 - □ Intel Xeon Phi (60 cores)
 - TI KeyStone hybrid-core (up to 4 ARM-A15 cores; 8 DSPs)
 - Xilinx ZYNQ hybrid-core (Dual ARM-A9 cores; FPGA)

intel

Conclusions

- Big-Data challenges and big opportunities
- Reconfigurable computing (RC) offers unique solution to key Big-Data problems
- CHREC, as a national research center & consortium, at forefront of HPRC
 - Novo-G reconfigurable supercomputer
 - Focusing on Big-Data bottlenecks in key science domains: BioRC, FinRC, DspRC
 - Architectural studies: many-cores, hybrid-cores

