Big Data Meets High-Performance Reconfigurable Computing

UF Workshop on Dense, Intense, and Complex Data

Alan George
CHREC Center Director

Herman Lam
CHREC Center Associate Director

June 19, 2013
What is CHREC?

NSF Center for High-Performance Reconfigurable Computing

- Industry/University Cooperative Research Center (I/UCRC)
 - Unique US national research center, operational since January 2007
- CHREC is both national research center and consortium
 - Research base: Leading ECE/CS research groups @ four major universities
 - University of Florida (lead)
 - George Washington University
 - Brigham Young University
 - Virginia Tech
 - Members: Industry & government organizations
 - Often cited by NSF as one of top national centers
 - e.g., CHREC won 2012 Schwarzkopf Prize for Technology Innovation

CHREC Members

- Industry & government organizations

1. AFRL Munitions Directorate
2. AFRL Sensors Directorate
3. AFRL Space Vehicles Directorate
4. Altera
5. AMD
6. Arctic Region Supercomputing Center
7. Convey Computer
8. Data IO
9. Draper Lab
10. GiDEL
11. Harris
12. Honeywell
13. IBM
14. Lockheed Martin MFC
15. Lockheed Martin SSC
16. Los Alamos National Laboratory
17. MIT Lincoln Laboratory
18. NASA Goddard Space Flight Center
19. NASA Kennedy Space Center
20. NASA Langley Research Center
21. National Instruments
22. National Security Agency
23. Office of Naval Research
24. Sandia National Laboratories
25. SEAKR Engineering
26. Space Micro
27. Texas Instruments
28. Xilinx
Conventional vs. Reconfigurable Computing

Conventional computing
- Each *app must conform* to predefined, fixed hardware of target
 - e.g. CPU, DSP, or GPU; fixed cores, memory, interconnect, & I/O structures
- GOOD performance when app maps well to predefined hardware
 - But poor performance when app maps poorly
- *Programming simplicity* with single core.
 - But programming complexity in scaling beyond one core

Reconfigurable computing
- Computing with hardware-reconfigurable circuits, devices, systems
 - Architecture can be *adapted to match unique needs* of each app or task
- GREAT performance when app maps poorly to predefined H/W
 - *Customized* parallelism, data precision, operations, memory structure, interconnect
- Much more *energy-efficient* than fixed-logic processors
Big-Data in Key Science Domains

Bioinformatics

- Sequencer output increases by 10x every 2 years!
 - Moore's Law: CPU performance doubles every 2 years
 - Kryder's Law: storage quadruples every 2 years

Computational finance

- Financial markets are significant producers of Big Data
 - Trades, quotes, earning statements, statistical releases, polls, etc.
- Our current emphasis is on risk analysis and management
 - Improve enterprise transparency, auditability, and oversight of risks
 - New regulatory and compliance requirements on risk reporting

Signal, image, & video processing

- Escalation in sensor fidelity and diversity
 - Explosion in data: limited time (real-time), power, space, & cost
- Vital in areas such as:
 - Computer/machine vision, medical imaging/diagnosis, face recognition, autonomous navigation, tracking, satellite imaging, etc.
Novo-G Supercomputer

- Developed and deployed at CHREC
 - Hardware acceleration of parallel applications
 - Hardware emulation of next-gen systems & apps
- Most powerful RC machine in known world
 - For some apps & uses, may be fastest computer of any kind in world!
 - $O(1000)$ of times less cost, size, power, & cooling than massive supercomputers
- Award-winning system
 - 2012 Schwarzkopf Award
 - 2010 HPCwire Award
- New system expansion
 - Addition of top-end 28nm FPGAs (32)
 - Stratix-V D8 devices in PROCe-V boards
 - Focus on high-performance interconnect
 - 3D-torus & 5D-hypercube FPGA topologies

Novo-G Annual Growth
- 2009: 96 top-end Stratix-III FPGAs, each with 4.25GB SDRAM
- 2010: 96 more Stratix-III FPGAs, each with 4.25GB SDRAM
- 2011: 96 top-end Stratix-IV FPGAs, each with 8.50GB SDRAM
- 2012: 96 more Stratix-IV FPGAs, each with 8.50GB SDRAM
- 2013: 32 top-end Stratix-V FPGAs (4x4x2 torus or 5D h-cube)
BioRC Research Highlights

- **Smith-Waterman on Novo-G**
 - Algorithm for optimal local alignment of DNA or RNA sequence pairs
 - Current configuration: 650 PEs per FPGA @ 125MHz (81 GCUPS limit)

- **CHREC BLAST Toolset on Novo-G**
 - **Novo-BLAST**:
 - High performance: hardware-accelerated BLAST algorithm
 - Output identical to NCBI-BLAST
 - **BSW (BLAST-Wrapped Smith-Waterman)**:
 - Max. sensitivity, with runtimes on order of NCBI-BLAST

<table>
<thead>
<tr>
<th># FPGAs</th>
<th>Runtime (sec)</th>
<th>Speedup *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23,846</td>
<td>827</td>
</tr>
<tr>
<td>4</td>
<td>5,966</td>
<td>3,307</td>
</tr>
<tr>
<td>96</td>
<td>250</td>
<td>78,926</td>
</tr>
<tr>
<td>128</td>
<td>188</td>
<td>104,955</td>
</tr>
<tr>
<td>192 (est.)</td>
<td>127</td>
<td>155,366</td>
</tr>
</tbody>
</table>

*Stratix-III E260 FPGAs at 125 MHz

** Performance equivalent to 155,366 Opteron cores!**

FinRC Research Highlights

- **FinRC app for derivative pricing**
 - Simulation model for multi-asset barrier options using Heston dynamics

- **FinRC OpenCL studies**
 - **Standard benchmark defined by Securities Technology Analysis Center (STAC)**
 - Productivity studies using Altera OpenCL

Scaling design to multiple FPGAs

Stratix IV E530 FPGA at 125 MHz; C-based SSE2 optimized baseline; On 1 core of Intel Xeon E5-2687 @ 3.1 GHz; Maturity = 10 years; 1,000,000 paths; 16 asset option
DspRC Research Highlights

Image Segmentation (Information Extraction)
- **Goal**: Locate & separate objects from background

Speeded Up Robust Features = **SURF** (Decision Making)
- **Goal**: Extract features and recognize objects/surroundings

Motivation for: Unsupervised + real-time image and video processing for autonomous applications

Architectural Studies for Big Data
- Explore adaptive networks to accelerate communication-intensive Big-Data apps
 - Efficient FPGA-to-FPGA multi-dimensional, backend networks
 - *e.g.*, Adaptable 3D-torus or 5D-hypercube

- Many-core and hybrid-core exploration for Big-Data
 - Tilera (up to 72 cores)
 - Intel Xeon Phi (60 cores)
 - TI KeyStone hybrid-core (up to 4 ARM-A15 cores; 8 DSPs)
 - Xilinx ZYNQ hybrid-core (Dual ARM-A9 cores; FPGA)
Conclusions

- Big-Data challenges and big opportunities
- Reconfigurable computing (RC) offers unique solution to key Big-Data problems
- CHREC, as a national research center & consortium, at forefront of HPRC
 - Novo-G reconfigurable supercomputer
 - Focusing on Big-Data bottlenecks in key science domains: BioRC, FinRC, DspRC
 - Architectural studies: many-cores, hybrid-cores