|
Technology Creates
Pierce's Disease-Resistant Grapevines
by Aaron Hoover
Grape
growers battling a disease that causes millions of dollars in losses each
year and also prevents the cultivation of popular grape varieties
in the Southeast may soon be able to turn to genetically modified
plants that resist the disease.
On May 15, the U.S. Patent and Trademark Office issued a patent for the
use of a group of genes in grapevines expected to make the plants resistant
to Pierces disease, for which there currently is no effective control.
The patent was issued jointly to the University of Florida and the U.S.
Department of Agriculture, who collaborated several years ago to develop
the technology to transfer one of the genes into the plants. The research
has since continued at UFs Institute of Food and Agricultural Sciences
as part of multimillion-dollar project.
We believe these genes could protect grape plants against a number
of diseases, but our target is Pierces disease, said Dennis
Gray, a UF professor of developmental biology at the UF Mid-Florida Research
and Education Center in Apopka. We had promising results early on
in the project, and were optimistic tests will confirm heightened
resistance in the plants.
With grapes ranked among the top 15 most valuable crops in the nation,
Pierces disease-resistant grape plants could have major benefits
for the wine- and table-grape industries, Gray said. The disease has caused
millions of dollars in damage in California.
The genetically modified plants could reduce or eliminate the use of insecticides
in California aimed at killing insects that spread disease. Such insecticides
provide, at best, temporary relief, according to UF research dating back
to the 1920s, Gray said. Another advantage of the genetically modified
plants is that they could open the door to growing more valuable wine-
and table-grape varieties in the southeast and Florida, he added.
Pierces disease is caused by a species of bacterium that lives exclusively
in the water vessels of a variety of plants. The strain that lives in
grapevines clogs the vessels, causing the plant to dry up and die. First
detected in southern California in 1884, the disease had been a minor
problem in West Coast viticulture for decades. In the mid-1990s, however,
it became prevalent in southern California and began marching steadily
northward.
Scientists have tied the spread to the emergence of the bacterium in an
insect, the glassy-winged sharpshooter, that has a much broader flight
range than that of previous Pierces disease-carrying insects in
California.
The problem has just exploded in the past few years, Gray
said.
Pierces disease has another negative effect: It is endemic to the
Southeast, where it prevents the cultivation of Vitis vinifera grape varieties
which include the worlds most popular wine and table grapes,
Gray said. As a result, growers in Florida and other Southeastern states
are restricted to native Muscadines or Pierces disease-resistant
vinifera hybrids, he said.
Gray and Ralph Scorza, a USDA agriculturalist, had their first success
in 1994 when they successfully transferred a lytic peptide gene into a
Thompson Seedless vine, the nations most popular grape. The top-selling
seedless table grape, raisin grape and wine grape, Thompson Seedless accounts
for 40 percent of the U.S. grapevine acreage.
The genes are a synthetic version of those found in a variety of organisms,
such as the silkworm larvae, which uses genes to kill bacteria and fungi,
Gray said. In laboratory conditions, the protein produced by the gene
kills the Pierces disease bacterium. The research has received about
$4 million in funding. Supporters include UF and the State of Floridas
Viticultural Trust Fund, which provided more than $200,000 via the Florida
Department of Agriculture and Consumer Affairs. ProfiGen, a Connecticut-based
company focused on plant variety improvement, also has provided significant
financial support and is the exclusive licensee of the patent. ProfiGen
expects research to intensify.
Dennis Gray djg@mail.ifas.ufl.edu