Big Data: Data Science Research and Education

Sanjay Ranka, CISE Department, ranka@cise.ufl.edu, 352 514 4213

CHARACTERISTICS OF BIG DATA

Volume:

The sheer amount of data generated or data intensity that must be ingested, analyzed, and managed to make decisions based on complete data analysis.

Velocity:

How fast data is being produced and changed and the speed with which data must be received, understood and processed.

Variety: Both structured and unstructured data generated by a wide range of sources.

Veracity: The quality and provenance of received data. Data Science Challenge: Solutions that use extant hardware and leverage open source software

Falling hardware prices

Storage

100 Terabyte (Cost \$10000) Tens of multi terabyte disks Read speed: several GB/s

1 Petabyte Storage System (Cost \$100,000)

Processing

Server (\$10,000) 4-8 processors, 512GB Billion tuples/second

Open Source Ecosystem

cloudera

Data Science Opportunity: Enable Novel Applications

Machine Learning for Spatio-temporal Datasets (with Rangarajan)

Remote Sensing for Climate Modeling

Physics-based feature detectors for CFD applications

Machine learning

Physics-based

Semi Supervised Learning for Expert In the Loop

- Expert labels a small fraction of the data
- Construct graph to propagate labels
- Label prediction weighted combination of neighbors

Understand Relationship between Aging, Mobility and Physical Activity (Manini)

Modeling Mobility Behavior (with Helmy)

User Internet Information:

- 1. Spatial and location-based information (buildings)
- 2. Temporal information (Sessions times and duration)
- 3. Interest-based information (web domains visited)
- 4. Load and traffic information (flow rate and packet rate)

Terabytes per week

Hierarchical Clustering Change Detection

	sh Timestamp	Source IP	Source Port	Dest IP	Dest Port	Protocol Num	ToS	Packet Count	Flow Size	
0618.00:00:07.184	0618.00:00:07.184	128.125.253.143	53	207.151.245.121	64209	17	0	1	469	
0618.00:00:07.184	0618.00:00:07.472	207.151.241.60	52759	74.125.19.17	80	6	0	4	1789	
0618.00:00:07.188	0618.00:00:07.188	193.19.82.9	31676	207.151.238.90	43798	17	0	1	103	

Table 1. Netflow sample

Real Time Change Detection using Synthetic Aperture Radar (with Sahni)

parallelism between GPUs, and also within the GPU.

• Throughput on cluster of 10 Tesla C2050s: 120 Gflop/s per GPU.

Hardware Software Co-design for Exascale Simulation (with Balachandar et. al.)

Energy Minimization for Mobile Bigdata (with Mishra)

Data Science Curriculum (with Rangarajan and Wang)

underway

Application Driven Project